Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation
نویسندگان
چکیده
منابع مشابه
SEGCloud: Semantic Segmentation of 3D Point Clouds
3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level...
متن کاملLarge-scale Point Cloud Semantic Segmentation with Superpoint Graphs
We propose a novel deep learning-based framework to tackle the challenge of semantic segmentation of largescale point clouds of millions of points. We argue that the organization of 3D point clouds can be efficiently captured by a structure called superpoint graph (SPG), derived from a partition of the scanned scene into geometrically homogeneous elements. SPGs offer a compact yet rich represen...
متن کاملPoint Cluster Analysis Using a 3D Voronoi Diagram with Applications in Point Cloud Segmentation
Three-dimensional (3D) point analysis and visualization is one of the most effective methods of point cluster detection and segmentation in geospatial datasets. However, serious scattering and clotting characteristics interfere with the visual detection of 3D point clusters. To overcome this problem, this study proposes the use of 3D Voronoi diagrams to analyze and visualize 3D points instead o...
متن کاملBiview Learning for Human Posture Segmentation from 3D Points Cloud
Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dim...
متن کاملAn Adaptive Approach for Segmentation of 3d Laser Point Cloud
Automatic processing and object extraction from 3D laser point cloud is one of the major research topics in the field of photogrammetry. Segmentation is an essential step in the processing of laser point cloud, and the quality of extracted objects from laser data is highly dependent on the validity of the segmentation results. This paper presents a new approach for reliable and efficient segmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Magazine
سال: 2020
ISSN: 2168-6831,2473-2397,2373-7468
DOI: 10.1109/mgrs.2019.2937630